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Procedure supplementing SCF interaction energies by 
dispersion term evaluated in dimer basis set within 
variation-perturbation approach 
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A variation-perturbation procedure for the evaluation of dispersion interac- 
tion, originally proposed by Jeziorski and van Hemert, has been reformulated 
to include basis set extension effects on an equal footing with the SCF 
interaction energy, corrected for basis set superposition error (BSSE). This 
approach has been tested for He2, (H2)2, (H20)2, and (C2H4) 2 complexes. 
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I. Introduction 

The majority of quantum chemical calculations of intermolecular interactions 
are still performed within the variational SCF approach neglecting the dispersion 
contribution, which is significant for nonpolar molecules. On the other hand, the 
dispersion energies evaluated within the classical perturbation approach seem to 
be seriously underestimated [1-2], especially if the basis set is not sufficiently 
extended. 

In 1976, Jeziorski and van Hemert developed a variation-perturbation procedure 
[3] for evaluation of induction and dispersion energies overcoming the difficulty 
of integration over the continuum spectrum of unoccupied molecular orbitals in 
the perturbation approach. This method has been successfully applied for the 
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water dimer yielding results which have been confirmed in independent theoretical 
[4] and experimental [5] studies. The aim of the present paper is to derive and 
test an equivalent but somewhat simpler procedure for evaluation of dispersion 
energy on an equal footing with the remaining contributions included in the SCP 
interaction energy [6] corrected for basis superposition effects. This approach 
has been tested on several dimers (i.e., He2, (H2)2, (H20)2, and (C2H4)2) and 
compared with available experimental and theoretical results. In addition, we 
attempted to optimize the basis set in order to reduce its size as far as possible. 

2. Method 

The classical perturbation expression for dispersion energy E(~sr , can be formally 
written as: 

M A  M B 

E~sP =4  E E D(a,bj) 
i = 1 j = 1  
o c t  o c t  

where 

D(aibj) = 

(1) 

~ [(a,(1)ak(1)lr~llbj(2)b,(2))l 2 
k=MA+I I=MB+I 

v a c  v a c  

X ( E / A  - -  A E k + E ~ - E ? )  -a 
ai, b~, ak, bt, and E A, E~, E A, E~ denote Fock eigenvectors and eigenvalues for 
occupied (occ) and vacant (vac) molecular orbitals determined for isolated A 
and B molecules in any atomic basis set (i.e., either monomer or dimer basis set). 
In general, the pair function, D(aib~), representing the dispersion interaction of 
occupied orbital ai with occupied orbital bj may constitute a lower bound for 
the Hylleraas-type functional [3, 7-8]: 

O( aib3) <- Jo( ~b ) 

= f f t~(I'2)~A(1)~B(2)[/A(1)+/B(2)--EA--E~]tP(I'2)d~'Idr2 

+2 f f l  ~(l'2''A(l'~'s(2'lr-(~[ai(a)bj(2)drl d'r2 (3) 

where 0(1, 2) is an arbitrary square integrable real trial function minimizing J 
functional, /A, /B Fock operators and the operators ~ A and ~ B project out of 
the space spanned by occupied orbitals: 

M A 

a= 1 -  2 [ai)(ai]. (4) 
i = 1  
o c t  

The trial function ~(1, 2) has been assumed in [3] to be spanned by the AB 
supermolecule atomic orbital set {xAB}: 

NAB NAB 

~(1, 2) = • • crsxr(1)Xs(2) (5) 
r $ 
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where cr~ are variational parameters to be optimized. In the general case, this 
leads to a set of N2B inhomogeneous linear equations. One may significantly 
reduce computational efforts needed to get all Crs coefficients by applying proper 
linear transformations on the atomic basis set {X AB} to diagonalize the ~ A f A ~  A 

and ~ 8/B~B operators [9]. In the original approach of Jeziorski and van Hemert 
[3], this was achieved by means of canonical orthogonalization [10] of the ~x B 
and ~x B sets and subsequent transformations of the orthogonalized sets to 
diagonalize Fock operators. 

In the present approach, we avoid performing any basis set transformations by 
assuming the trial function q~(1, 2) to be spanned by the molecular orbital sets 
{a AB} and {b AB} obtained for isolated molecules A and B, within the AB super- 
molecular atomic orbital basis set X AB (in general, any atomic basis set could be 
assumed): 

NAB NAB 
~(1,2) = Y~ • CxyaAB(1)bAB(2). (6) 

x y 

Taking into account the orthonormality of the a AB and b g8 sets and substituting 
(6) into expression (3), one may readily obtain: 

NAB NAB 
Ji)[0(1, 2)] = ~ ~ [C2kz(EA(B)--EA(B)+EB(A)--E~ (a)) 

k ~ MA-I- 1 /= MB+I 

+ 2Ck,(aA"(1)a~"(1)lrl-211bAB(2)bAB(2))]. (7) 

At the minimum of J/j[~b(1, 2)] functional we have: 

OJo[q,(1, 2)3 
- o  (8) 

OCkl 
so the optimal variational coefficients ckl are: 

ck, = ( a ~ B ( 1 ) a ~ B ( 1 ) ] r ; l l b ' ~ B ( 2 ) b p R ( 2 ) ) ( E ~  (B ) -  E A(B) + E B(A)- E~(A)) -1. (9) 

Thus, 

NAB NAB 

D(a,bj) <- Z E (a~B(1)a~B(1)]"?~]b~B(2)b~B(2))2 
k= MA+I I=MB+I 

vac vac 

x (E A(B)- E A(B) + E B(A)- EB(A)) -1. (10) 

This equation (10) is quite similar to the classical M011er-Plesset perturbational 
expression (1 1), but the summation over the continuous set of virtual orbitals in 
(2) has been replaced by a sum over discrete orbital energies in (11) 

NA NB 
U(a,bj) = Y E (aA(1)aA(1)]r711b~(2)bB(2)) 2 

k-- MA+ 1 I=MB+I 

A A B • (Ei --Ek + Ej -EtB) -1. (11) 

Using monomer atomic basis sets {a A} and {a B} for isolated monomers in (6), 
the dispersion energy obtained from (10) will be equivalent to the classical 
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Table 1. Dispersion energy for interaction of two hydrogen molecules (rectangular geometry, R = 
5.5 a.u.) in [kcal/mol] 

A3 basis 
A3 basis plus ls bond orbital with a exponent 
0.05 0.1 0.2 0.4 

Other results for 
a dispersion 
energy calculation 

EDISP a --0.1783 --0.1975 --0.1987 --0.1929 --0.1748 
EDISP b --0.2178 --0.2327 --0.2336 --0.2300 --0.2162 

-0.1776 ~ 

-0.2614 r 
-0.2855 d 
-0.251 d 

a Classical perturbational formula (11) (monomer in monomer basis set) 
b Variation-perturbation formula (10) (monomer in dimer basis set) 
c Ref. [12] 
a Epstein-Nesbet formula [16] 

perturbational expression (11) (M011er-Plesset). However, any extension of the 
atomic basis set beyond monomer  set size will result in an increase in the number  
of  discrete virtual states providing a better estimate of  dispersion energy. From 
the viewpoint of  computational  economy, the dimer basis set {X AB} may provide 
the optimal choice. The time consuming two electron integrals have to be calcu- 
lated within the dimer basis set to evaluate the remaining SCF interaction energy 
contributions corrected by Boys' counterpoise method [11]. So, using (10) at 
quite little expense, one may significantly improve dispersion energy estimates 
over the classical perturbation approach (11). Thus, the method based on equation 
(10) seems to supplement in a natural way the SCF interaction energy corrected 
for basis set superposition effects [6] by means of the counterpoise correction 
[11] where monomer  energies and wave functions have to be calculated in dimer 
basis set also. 

- -  ] ~ ( 1 )  ..L ]U(1) . - I - / :~(R)  (12) 
A E s c  F ---- E A B  - -  E A ( B )  - -  E B ( A )  - -  ~L, E L - -  X-'EX - -  x - ' IN  D 

E(1) denotes the first order electrostatic EL 

E(~x ~ - first order exchange and 
E(R) hi h r INo-- g e order induction energy. 

One should note that a further increase of  theoretical dispersion energy estimates 
could result f rom applying Epstein-Nesbet  partitioning of the total hamiltonian 
[12, 13] resulting in shifting of denominators of  (10) and (11) by replacing the 
differences between orbital energies by the differences of  the related excitation 
energies. However,  as the Epstein-Nesbet  approach is basis set dependent  and 
not strictly bound [12, 13], we use in this study the M011er-Plesset partition of 
hamiltonian [14] only. 

3. Sample test results 

In order to evaluate the physical utility of  the present approach,  the intermolecular 
interaction energies have been calculated within the SCF method, corrected for 
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BSSE and supplemented by the dispersion contribution evaluated from the 
classical perturbation formula (11) and within the variation-perturbation 
approach (10) utilizing the dimer basis set. Calculations have been performed 
for hydrogen dimer (H2)2, which was primarily our numerical test case for 
equation (11), and for He2, for which extensive literature data are available. The 
next two cases: water dimer (H20)2 and ethylene dimer ( C 2 H 4 ) 2  a r e  already in 
the range of chemists' interests. 

Interaction of two hydrogen molecules is quite weak and is dominated by the 
dispersion term. Results reported in [16] allowed us to test our program, compar- 
ing our results from equation (11) with those reported by Kochanski [12]. The 
rectangular dimer (R = 5.5 a.u.) has been examined within the (4, 1) ~ [2, 1] basis 
set taken from [12] (basis A3 in the nomenclature of Ref. [12]). Extension of 
this basis by supplementing it by Is bond orbital with optimized exponent brings 
the dispersion energy closer to the results of Jaszunski, et. al. [15]. 

He2 is also a case of very weak physical interaction dominated by dispersion 
energy. The s and p part of extended (8, 2, 1, 1) basis set contracted to [1, 2, 1, 1] 
reported in [16] has been used in this work. Instead of pure d orbitals, the lobe 
representation of it was employed. Each set of d orbitals was represented by 12 
or 6 symmetrically placed ls lobe functions around each atom. The distance x 
between lobes and nuclei has been determined according to the approximate 
Whitten rule: 

(0.3) -1/2 
x 

O/ 

where a denotes d orbital exponent [17, 18]. According to previous theoretical 
studies [16, 19], the dispersion energy is quite strongly dependent on the value 
of the polarization function exponents. In Table 2, the interaction energy com- 
ponents have been presented as a function of lobe function exponent a. In the 
case of He2, the optimal a values reported previously for d polarization functions 

Table 2. He -He  interaction energy components  in [kcal/mol]  as a function of the lobe polarization 
function exponent  a (R = 5.6 a.u.) 

o/ 

(6 lobes/  
a (12 lobe funct ions/a tom) atom) Other 

0.16 0.21897 c 0.28 0.48 0.21897 results 

E~  cv -2.859063 -2.859056 -2.859044 -2.859038 -2.859055 
EDisv a --0.0278181 --0.0293121 --0.0292580 --0.0270865 --0.0204885 
EDISV b --0.0285719 --0.0305880 --0.0310766 --0.0290272 --0.0218587 --0.03201 d 
~Esc  F 0.0194270 0.0189593 0.0184500 0.0162386 0.0189561 0.019333 d 
~Escv+EDlsv -0.0091449 -0.0116288 -0.0126266 -0.0127886 -0.0029036 -0.012698 d 

Dispersion energy obtained from classical formula (11) 
b Dispersion energy obtained within variational-perturbational approach (10) 
c Chalasinski  and Jeziorski optimal value of  a [15] 
a Ref. [15] 
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of Cartesian Gaussian form are a = 0.14 [19] and a --0.21897 [16]. The value of 
�9 ~r _ -  -0.03107 kcal/mole obtained for R = 5.6 a.u. with the dispersion energy t~D~Sv-- 

the optimal exponent found in this study (a  = 0.28) is very close (within 3%) to 
the value reported by Chatasinski and Jeziorski [ 16] ~- rnsPr~r -- -0.0320 kcal/mole). 

The water dimer and the ethylene dimer represent a wide class of molecular 
complexes where the role of the dispersion term is still a matter of dispute [2-3, 
15, 20]. Up to now, one of  the most reliable calculations of dispersion energy 
for (H20)2 has been done within the variation-perturbation method [3] in an 
extended (11, 7, 2/6, 1)-~ [4, 3, 2/2, 1] basis set. In the present study, we used 
only the sp part of the above mentioned basis set described in [22]. In addition, 
we represented polarization functions in two ways: a) by placing symmetrically 
four ls  lobe functions around each oxygen atom in the symmetry plane of the 
complex at its assumed geometry [22], and (b) by locating symmetrically six ls 
lobe functions around each oxygen atom. In both cases, we have optimized the 
exponent of the off-centre lobe function (Table 3). The dispersion energy seems 
to be very sensitive to the variation of the polarization function exponent, reaching 
extreme values for very diffuse functions. This could explain quite significant 
differences between previously reported dispersion energy values for (H20)2 
ranging from -1.9 to -0.3 kcal/mol [3, 20-22] where the value of the polarization 
function exponent was more or less arbitrarily assumed to minimize the energy 
or to reproduce the molecular dipole moment. The use of the dimer basis set in 
(11) leads to much greater dispersion energies in agreement with the recent study 
of Kestner et al. [21] where counterpoise correction was applied within MOiler- 
Plesset approach. 

The ethylene dimer represents here a new class of molecular ~r-  ~r complexes. 
In this study, we have used a parallel "sandwich" arrangement of ethylene 
monomers with interplanar distance 5 a.u. (orientation 1 in Ref. 2) and 4-31G 
basis set. The resulting dispersion energies evaluated in dimer basis set (10) and 
monomer basis set (11) are -7.334 kcal/mol and -4.209 kcal/mol (in agreement 
with the value -4.208 kcal/mol reported by Suzuki et al. [2]). As before, the use 
of the dimer basis set in (10) results in a substantial increase of dispersion energy. 

4. Conclusions 

The procedure outlined above utilizing dimer basis sets for monomers in the 
M011er-Plesset formula (10) seems to be an optimal, but still arbitrary, way to 
evaluate dispersion energy in a way consistent with other interaction energy 
components evaluated within the SCF approach corrected for BSSE. Additional 
support for using the dimer basis set may be found in recent papers of Chatasinski 
[23, 24]. 

Our calculations, like other post-SCF calculations, emphasize the importance of 
a proper choice for the basis; a good SCF basis is seldom an optimal post-SCF 
basis. But the addition of  polarization functions to a good SCF basis set is an 
indispensable first step [24]. This still does not provide a remedy for the problems 
of an incomplete basis; semiempirical models may then be needed to make up 
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for the deficiencies. It is encouraging that simple atom-atom C R  - 6  potentials 
are capable to represent dispersion energy correctly [25, 26]. 
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